\(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx\) [642]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 398 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\frac {2 \left (3 a^4-15 a^2 b^2+8 b^4\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^4 (a-b) (a+b)^{3/2} d}-\frac {2 \left (3 a^3+9 a^2 b-6 a b^2-8 b^3\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^3 (a-b) (a+b)^{3/2} d}+\frac {2 b^2 \sin (c+d x)}{3 a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \]

[Out]

2/3*b^2*sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2)+8/3*b^2*(2*a^2-b^2)*sin(d*x+c)/a^2/(a
^2-b^2)^2/d/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2)+2/3*(3*a^4-15*a^2*b^2+8*b^4)*cot(d*x+c)*EllipticE((a+b*cos
(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x
+c))/(a-b))^(1/2)/a^4/(a-b)/(a+b)^(3/2)/d-2/3*(3*a^3+9*a^2*b-6*a*b^2-8*b^3)*cot(d*x+c)*EllipticF((a+b*cos(d*x+
c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/
(a-b))^(1/2)/a^3/(a-b)/(a+b)^(3/2)/d

Rubi [A] (verified)

Time = 0.91 (sec) , antiderivative size = 398, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2881, 3134, 3077, 2895, 3073} \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\frac {8 b^2 \left (2 a^2-b^2\right ) \sin (c+d x)}{3 a^2 d \left (a^2-b^2\right )^2 \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {2 b^2 \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}+\frac {2 \left (3 a^4-15 a^2 b^2+8 b^4\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{3 a^4 d (a-b) (a+b)^{3/2}}-\frac {2 \left (3 a^3+9 a^2 b-6 a b^2-8 b^3\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{3 a^3 d (a-b) (a+b)^{3/2}} \]

[In]

Int[1/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^(5/2)),x]

[Out]

(2*(3*a^4 - 15*a^2*b^2 + 8*b^4)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c
 + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*
a^4*(a - b)*(a + b)^(3/2)*d) - (2*(3*a^3 + 9*a^2*b - 6*a*b^2 - 8*b^3)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b
*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqr
t[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a^3*(a - b)*(a + b)^(3/2)*d) + (2*b^2*Sin[c + d*x])/(3*a*(a^2 - b^2)*d*S
qrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^(3/2)) + (8*b^2*(2*a^2 - b^2)*Sin[c + d*x])/(3*a^2*(a^2 - b^2)^2*d*Sqrt
[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])

Rule 2881

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2
- b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])
^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m +
n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rubi steps \begin{align*} \text {integral}& = \frac {2 b^2 \sin (c+d x)}{3 a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}+\frac {2 \int \frac {\frac {1}{2} \left (3 a^2-4 b^2\right )-\frac {3}{2} a b \cos (c+d x)+b^2 \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx}{3 a \left (a^2-b^2\right )} \\ & = \frac {2 b^2 \sin (c+d x)}{3 a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {4 \int \frac {\frac {1}{4} \left (3 a^4-15 a^2 b^2+8 b^4\right )-\frac {1}{2} a b \left (3 a^2-b^2\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )^2} \\ & = \frac {2 b^2 \sin (c+d x)}{3 a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\left (3 a^3+9 a^2 b-6 a b^2-8 b^3\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{3 a^2 (a-b) (a+b)^2}+\frac {\left (3 a^4-15 a^2 b^2+8 b^4\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )^2} \\ & = \frac {2 \left (3 a^4-15 a^2 b^2+8 b^4\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^4 (a-b) (a+b)^{3/2} d}-\frac {2 \left (3 a^3+9 a^2 b-6 a b^2-8 b^3\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^3 (a-b) (a+b)^{3/2} d}+\frac {2 b^2 \sin (c+d x)}{3 a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.40 (sec) , antiderivative size = 1321, normalized size of antiderivative = 3.32 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=-\frac {-\frac {4 a \left (9 a^4 b-17 a^2 b^3+8 b^5\right ) \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-4 a \left (3 a^5-15 a^3 b^2+8 a b^4\right ) \left (\frac {\sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\right )+2 \left (3 a^4 b-15 a^2 b^3+8 b^5\right ) \left (\frac {i \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {a+b \cos (c+d x)} E\left (i \text {arcsinh}\left (\frac {\sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )|-\frac {2 a}{-a-b}\right ) \sec (c+d x)}{b \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \sqrt {\frac {(a+b \cos (c+d x)) \sec (c+d x)}{a+b}}}+\frac {2 a \left (\frac {a \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\right )}{b}+\frac {\sqrt {a+b \cos (c+d x)} \sin (c+d x)}{b \sqrt {\cos (c+d x)}}\right )}{3 a^3 (a-b)^2 (a+b)^2 d}+\frac {\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \left (-\frac {2 b^3 \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}-\frac {2 \left (9 a^2 b^3 \sin (c+d x)-5 b^5 \sin (c+d x)\right )}{3 a^3 \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}+\frac {2 \tan (c+d x)}{a^3}\right )}{d} \]

[In]

Integrate[1/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^(5/2)),x]

[Out]

-1/3*((-4*a*(9*a^4*b - 17*a^2*b^3 + 8*b^5)*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c +
 d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[
Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt
[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - 4*a*(3*a^5 - 15*a^3*b^2 + 8*a*b^4)*((Sqrt[((a + b)*Cot[(c + d*x)/2]
^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]
^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a +
b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (Sqrt[((a + b)*Cot[(c + d*x)/2
]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2
]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2
*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])) + 2*(3*a^4*b - 15*a^2*b^3 +
 8*b^5)*((I*Cos[(c + d*x)/2]*Sqrt[a + b*Cos[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2]/Sqrt[Cos[c + d*x]]]
, (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[((a + b*Cos[c + d*x])*Sec[c + d
*x])/(a + b)]) + (2*a*((a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*
x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[
c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sq
rt[a + b*Cos[c + d*x]]) - (a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c +
 d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[
((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*
x]]*Sqrt[a + b*Cos[c + d*x]])))/b + (Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(b*Sqrt[Cos[c + d*x]])))/(a^3*(a -
 b)^2*(a + b)^2*d) + (Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*((-2*b^3*Sin[c + d*x])/(3*a^2*(a^2 - b^2)*(a
 + b*Cos[c + d*x])^2) - (2*(9*a^2*b^3*Sin[c + d*x] - 5*b^5*Sin[c + d*x]))/(3*a^3*(a^2 - b^2)^2*(a + b*Cos[c +
d*x])) + (2*Tan[c + d*x])/a^3))/d

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(3674\) vs. \(2(366)=732\).

Time = 13.49 (sec) , antiderivative size = 3675, normalized size of antiderivative = 9.23

method result size
default \(\text {Expression too large to display}\) \(3675\)

[In]

int(1/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*b)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/d*(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b
)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1))^(1/2)*(-3*csc(d*x+c)^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/
2))*a^6*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c
))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2+8*b^6*(csc(d*x+c)-cot(d*x+c))-7*csc(d*x+c)^5*a^2*b^4*(1-cos(d*x+c))^5-
16*csc(d*x+c)^5*a*b^5*(1-cos(d*x+c))^5-18*csc(d*x+c)^3*a^4*b^2*(1-cos(d*x+c))^3-16*csc(d*x+c)^3*a^3*b^3*(1-cos
(d*x+c))^3+36*csc(d*x+c)^3*a^2*b^4*(1-cos(d*x+c))^3+8*csc(d*x+c)^3*a*b^5*(1-cos(d*x+c))^3-3*EllipticF(cot(d*x+
c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^6*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c
))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)+3*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))
*a^6*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^
2+a+b)/(a+b))^(1/2)+8*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^6*(-csc(d*x+c)^2*(1-cos(d*x+c))^
2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)-6*csc(d*x+c)^5*
a^5*b*(1-cos(d*x+c))^5-12*csc(d*x+c)^5*a^4*b^2*(1-cos(d*x+c))^5+30*csc(d*x+c)^5*a^3*b^3*(1-cos(d*x+c))^5+3*Ell
ipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^5*b*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)
^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)+21*EllipticF(cot(d*x+c)-csc(d*x+c),(-(
a-b)/(a+b))^(1/2))*a^4*b^2*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+
c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)+13*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^3*(-c
sc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(
a+b))^(1/2)-10*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^4*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1
)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)-8*EllipticF(cot(d*
x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^5*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d
*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)+6*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1
/2))*a^5*b*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*
x+c))^2+a+b)/(a+b))^(1/2)-12*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b^2*(-csc(d*x+c)^2*(1-c
os(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)-30*E
llipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^3*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*
x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)-7*EllipticE(cot(d*x+c)-csc(d*x+c),
(-(a-b)/(a+b))^(1/2))*a^2*b^4*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d
*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)+16*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^5*(-
csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/
(a+b))^(1/2)-18*csc(d*x+c)^2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b^2*(-csc(d*x+c)^2*(1-c
os(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-c
os(d*x+c))^2+23*csc(d*x+c)^2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^4*(-csc(d*x+c)^2*(1-c
os(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-c
os(d*x+c))^2+9*csc(d*x+c)^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^5*b*(-csc(d*x+c)^2*(1-cos(
d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(
d*x+c))^2+9*csc(d*x+c)^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b^2*(-csc(d*x+c)^2*(1-cos(d
*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d
*x+c))^2-17*csc(d*x+c)^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^3*(-csc(d*x+c)^2*(1-cos(d
*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d
*x+c))^2-6*csc(d*x+c)^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^4*(-csc(d*x+c)^2*(1-cos(d*
x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*
x+c))^2+8*csc(d*x+c)^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^5*(-csc(d*x+c)^2*(1-cos(d*x+c
))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c
))^2+6*csc(d*x+c)^3*a^6*(1-cos(d*x+c))^3-16*csc(d*x+c)^3*b^6*(1-cos(d*x+c))^3-14*a^3*b^3*(csc(d*x+c)-cot(d*x+c
))+8*a*b^5*(csc(d*x+c)-cot(d*x+c))+6*a^5*b*(csc(d*x+c)-cot(d*x+c))+6*a^4*b^2*(csc(d*x+c)-cot(d*x+c))-17*a^2*b^
4*(csc(d*x+c)-cot(d*x+c))+3*csc(d*x+c)^5*a^6*(1-cos(d*x+c))^5+8*csc(d*x+c)^5*b^6*(1-cos(d*x+c))^5+3*a^6*(csc(d
*x+c)-cot(d*x+c))+3*csc(d*x+c)^2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^6*(-csc(d*x+c)^2*(1-c
os(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-c
os(d*x+c))^2-8*csc(d*x+c)^2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^6*(-csc(d*x+c)^2*(1-cos(d*
x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*
x+c))^2)/(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)^2/(csc(d*x+c)^2*(1-cos(d*x+c))^
2+1)/(-(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1))^(3/2)/(a-b)^2/(a+b)^2/a^3

Fricas [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(b^3*cos(d*x + c)^5 + 3*a*b^2*cos(d*x + c)^4 + 3*a^2*b*co
s(d*x + c)^3 + a^3*cos(d*x + c)^2), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(1/cos(d*x+c)**(3/2)/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((b*cos(d*x + c) + a)^(5/2)*cos(d*x + c)^(3/2)), x)

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((b*cos(d*x + c) + a)^(5/2)*cos(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int(1/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^(5/2)),x)

[Out]

int(1/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^(5/2)), x)